A fully discrete scheme for diffusive-dispersive conservation laws

نویسندگان

  • Christophe Chalons
  • Philippe G. LeFloch
چکیده

We introduce a fully discrete (in both space and time) scheme for the numerical approximation of diffusive-dispersive hyperbolic conservation laws in one-space dimension. This scheme extends an approach by LeFloch and Rohde [4]: it satisfies a cell entropy inequality and, as a consequence, the space integral of the entropy is a decreasing functionof time.This is an important stability property, shared by the continuous model as well. Following Hayes and LeFloch [2], we show that the limiting solutions generated by the scheme need not coincide with the classical Oleinik-Kruzkov entropy solutions, but contain nonclassical undercompressive shock waves. Investigating the properties of the scheme, we stress various similarities and differences between the continuous model and the discrete scheme (dynamics of nonclassical shocks, nucleation, etc).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Order Schemes, Entropy Inequalities, and Nonclassical Shocks

We are concerned with the approximation of undercompressive, regularizationsensitive, nonclassical solutions of hyperbolic systems of conservation laws by high-order accurate, conservative, and semidiscrete finite difference schemes. Nonclassical shock waves can be generated by diffusive and dispersive terms kept in balance. Particular attention is given here to a class of systems of conservati...

متن کامل

An Assessment of Semi-Discrete Central Schemes for Hyperbolic Conservation Laws

High-resolution finite volume methods for solving systems of conservation laws have been widely embraced in research areas ranging from astrophysics to geophysics and aero-thermodynamics. These methods are typically at least second-order accurate in space and time, deliver non-oscillatory solutions in the presence of near discontinuities, e.g., shocks, and introduce minimal dispersive and diffu...

متن کامل

Singular limits for a parabolic-elliptic regularization of scalar conservation laws

We consider scalar hyperbolic conservation laws with a nonconvex flux, in one space dimension. Then, weak solutions of the associated initial-value problems can contain undercompressive shock waves. We regularize the hyperbolic equation by a parabolic-elliptic system that produces undercompressive waves in the hyperbolic limit regime. Moreover we show that in another limit regime, called capill...

متن کامل

Existence of Traveling Waves for Diffusive-dispersive Conservation Laws

In this work we show the existence existence and uniqueness of traveling waves for diffusive-dispersive conservation laws with flux function in C1(R), by using phase plane analysis. Also we estimate the domain of attraction of the equilibrium point attractor corresponding to the right-hand state. The equilibrium point corresponding to the left-hand state is a saddle point. According to the phas...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 89  شماره 

صفحات  -

تاریخ انتشار 2001